Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment
نویسندگان
چکیده
Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome.
منابع مشابه
Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome.
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-a...
متن کاملStem cell therapies benefit Alport syndrome.
Patients with Alport syndrome progressively lose renal function as a result of defective type IV collagen in their glomerular basement membrane. In mice lacking the alpha3 chain of type IV collagen (Col4A3 knockout mice), a model for Alport syndrome, transplantation of wild-type bone marrow repairs the renal disease. It is unknown whether cell-based therapies that do not require transplantation...
متن کاملBone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease.
Type IV collagen is a predominant component of basement membranes, and glomeruli of a kidney filter approximately 70-90 liters of plasma every day through a specialized glomerular basement membrane (GBM). In Alport syndrome, a progressive disease primarily affecting kidneys, mutations in GBM-associated type IV collagen genes (COL4A3, COL4A4, or COL4A5) lead to basement membrane structural defec...
متن کاملUpregulated Expression of Integrin α1 in Mesangial Cells and Integrin α3 and Vimentin in Podocytes of Col4a3-Null (Alport) Mice
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many fea...
متن کاملEarly RAAS Blockade Exerts Renoprotective Effects in Autosomal Recessive Alport Syndrome.
Alport syndrome is a progressive renal disease caused by mutations in COL4A3, COL4A4, and COL4A5 genes that encode collagen type IV alpha 3, alpha 4, and alpha 5 chains, respectively. Because of abnormal collagen chain, glomerular basement membrane becomes fragile and most of the patients progress to end-stage renal disease in early adulthood. COL4A5 mutation causes X-linked form of Alport synd...
متن کامل